REVISED SOIL AND GROUNDWATER MANAGEMENT PLAN
COOLEY LANDING
2100 BAY ROAD
EAST PALO ALTO, CALIFORNIA

PREPARED FOR:
Callander Associates
311 Seventh Avenue
San Mateo, California 94401

PREPARED BY:
Ninyo & Moore
Geotechnical and Environmental Sciences Consultants
1956 Webster Street, Suite 400
Oakland, California 94612

January 16, 2012
Project No. 401634004
January 16, 2012
Project No. 401634004

Mr. Brian Fletcher
Callander Associates
311 7th Avenue
San Mateo, California 94401

Subject: Revised Soil and Groundwater Management Plan
Cooley Landing
2100 Bay Road
East Palo Alto, California

Dear Mr. Fletcher:

In accordance with your request, Ninyo & Moore has prepared this revised Soil and Groundwater Management Plan (SGMP) for Cooley Landing located at 2100 Bay Road in East Palo Alto and Menlo Park, California (site). This revised SGMP was prepared at the request of the City of East Palo Alto and the Mid Peninsula Regional Open Space District (District) due to an expansion of the projects western boundaries. The request to revise the initial SGMP to include the additional area to the west came from Callander Associates (Callander) via a December 1, 2011 e-mail. The initial SGMP was prepared in general accordance with our proposal dated May 3, 2010, and discussions with staff at the Regional Water Quality Control Board (RWQCB), San Francisco Bay Region and San Mateo County, Department of Environmental Health, Local Enforcement Agency (DEH/LEA). The initial SGMP was prepared in place of the Risk Management Plan (RMP) as indicated in our May 2010 proposal based on discussions with regulatory agency personnel, and because the contents of the plan are more applicable to the project. The contents of this revised SGMP are essentially unchanged with the exception of incorporating the additional area to the west.

This revised SGMP should be implemented during construction activities associated with developing the site into a public park including, but not limited to, subsurface utility installations, implementing the planned remedial action (constructing an engineered cap), and other activities associated with the concurrent development of the site. This revised SGMP should be imple-
mented in conjunction with the Operations and Maintenance Plan (O&M Plan) when a future activity subsequent to remedial action and park development involves disturbing the engineered cap. It is our understanding that the O&M Plan, prepared under separate cover, will be implemented following completion of the remedial action activities. The O&M Plan will present the policies and procedures to be implemented for long-term operation, maintenance, monitoring, and inspection related to the Cooley Landing site.

We appreciate the opportunity to be of continued service to you on this project.

Respectfully submitted,

NINYO & MOORE

Beth S. Abramson-Beck, PG
Principal Geologist

Kris M. Larson, PG
Principal Environmental Geologist

Distribution: (1) Addressee
(1) Mark Johnson, Regional Water Quality Control Board,
 San Francisco Bay Region
(1) Lily Lee, US EPA/City of East Palo Alto
(1) Greg Schirle, San Mateo County Department of Environmental Heath
(1) Frank Davies, CalRecycle
(1) Tom Cota, Department of Toxic Substances Control
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. SITE DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>3. PROJECT DESCRIPTION</td>
<td>3</td>
</tr>
<tr>
<td>4. SITE CHARACTERIZATION</td>
<td>4</td>
</tr>
<tr>
<td>4.1. Site History and Background</td>
<td>4</td>
</tr>
<tr>
<td>5. SITE CHARACTERIZATION</td>
<td>5</td>
</tr>
<tr>
<td>5.1. Groundwater</td>
<td>5</td>
</tr>
<tr>
<td>5.2. Surface Water</td>
<td>6</td>
</tr>
<tr>
<td>5.3. Subsurface Conditions</td>
<td>6</td>
</tr>
<tr>
<td>6. DEFINITIONS</td>
<td>8</td>
</tr>
<tr>
<td>6.1. Materials</td>
<td>8</td>
</tr>
<tr>
<td>6.2. Contaminated Substance</td>
<td>8</td>
</tr>
<tr>
<td>6.3. Hazardous Substance</td>
<td>8</td>
</tr>
<tr>
<td>6.4. Hazardous Waste</td>
<td>9</td>
</tr>
<tr>
<td>6.5. Competent Person</td>
<td>9</td>
</tr>
<tr>
<td>6.6. Construction Area</td>
<td>9</td>
</tr>
<tr>
<td>7. CONTAMINANTS OF POTENTIAL CONCERN</td>
<td>10</td>
</tr>
<tr>
<td>8. REMEDIAL ACTION AND CONSTRUCTION OF A PUBLIC PARK</td>
<td>11</td>
</tr>
<tr>
<td>9. WASTE CATEGORIES</td>
<td>12</td>
</tr>
<tr>
<td>10. REGULATORY FRAMEWORK</td>
<td>13</td>
</tr>
<tr>
<td>11. PROJECT TEAM</td>
<td>14</td>
</tr>
<tr>
<td>11.1. Project Manager</td>
<td>14</td>
</tr>
<tr>
<td>11.2. General Contractor(s)</td>
<td>14</td>
</tr>
<tr>
<td>11.3. Health and Safety Manager</td>
<td>15</td>
</tr>
<tr>
<td>11.4. Subcontractors</td>
<td>15</td>
</tr>
<tr>
<td>11.5. Project Environmental Consultant</td>
<td>15</td>
</tr>
<tr>
<td>11.5.1. Project Manager</td>
<td>16</td>
</tr>
<tr>
<td>11.5.2. Field Geologist/Engineer/Scientist</td>
<td>16</td>
</tr>
<tr>
<td>11.6. Project Geotechnical Consultant</td>
<td>16</td>
</tr>
<tr>
<td>12. NOTIFICATIONS</td>
<td>16</td>
</tr>
<tr>
<td>13. HEALTH AND SAFETY PLAN</td>
<td>17</td>
</tr>
<tr>
<td>14. SOIL EXCAVATION</td>
<td>18</td>
</tr>
<tr>
<td>14.1. Excavated Material Reuse or Disposal</td>
<td>18</td>
</tr>
<tr>
<td>14.2. Intrusive Work Monitoring</td>
<td>20</td>
</tr>
</tbody>
</table>
15. SEGREGATION AND STOCKPILING ...20
 15.1. Stockpile Management ...21
 15.2. Best Management Practices ...22
 15.3. Odor and Vapor Control ...22
 15.4. Dust Control ..22

16. UNKNOWN CONTAMINATION ..22

17. STOCKPILE CHARACTERIZATION ..23
 17.1. Stockpile Sampling ..23
 17.2. Analytical Testing Program ...24

18. TRANSPORT AND DISPOSAL ...25

19. GROUNDWATER MANAGEMENT ..27

20. DOCUMENTATION ..28

21. LIMITATIONS ..29

22. REFERENCES ..31

Figures
Figure 1 – Site Location
Figure 2 – Cooley Landing Site
Figure 3 – Final Concept Plan and Proposed Remedial Action

Appendix
Appendix A – Final Concept Plan
1. **INTRODUCTION**

This revised Soil and Groundwater Management Plan (SGMP) was prepared for Callander Associates and the City of East Palo Alto (City) for the Cooley Landing site located at 2100 Bay Road, East Palo Alto and Menlo Park, California (site). Contaminants of Potential Concern (COPCs) have been detected in cover fill soils and in burned wastes over most of the site. Elevated concentrations of these COPCs are present in surface and shallow subsurface materials at concentrations that pose potential hazards to site users, construction workers, and the aquatic habitat of San Francisco Bay. As a result of these environmental conditions, a remedial action will be implemented consisting of construction of an engineered cap (Ninyo & Moore, 2010).

This revised SGMP has been prepared to summarize the protocol to be implemented during planned construction of the site into a public park. This revised SGMP should be implemented during construction activities including, but not limited to, subsurface utility installations, implementing the planned remedial action consisting of constructing an engineered cap, and other activities associated with the development of the site. This SGMP should be implemented in conjunction with the Operations and Maintenance Plan (O&M Plan) when a future activity subsequent to remedial action and park development involves potentially disturbing the engineered cap. The O&M Plan prepared under separate cover will be implemented following completion of the remedial action activities. The O&M Plan will present the policies and procedures to be implemented for long-term operation, maintenance, monitoring, and inspection related to the Cooley Landing site.

Material excavated during subsurface utility constructions, remediation of the potential wetlands area, and other activities are proposed to be reused on-site. In the event these excavated materials are temporarily stockpiled on-site, this revised SGMP provides protocol to be followed in association with their management. It is not anticipated that excavated materials will be transported and disposed of off-site with the exception of some potentially unsuitable debris currently located at the construction debris area at the southwest area of the site.

This revised SGMP addresses worker health and safety controls, personnel assignments and responsibilities, cover fill soils/waste excavation, management of contaminated and potentially
contaminated materials, on-site reuse and, if required, off-site disposal procedures, and provides recommendations to reduce exposure to workers and the public from contaminants, if encountered. Work performed under this revised SGMP shall be in compliance with the project specifications for cap construction, a site health and safety plan, and applicable local, state, and federal statutes and regulations.

For purposes of this revised SGMP, the term “materials” refers to COPC-impacted cover fill soils, burned wastes, debris, and/or other surface and subsurface materials that may be encountered during the planned construction, including groundwater.

2. SITE DESCRIPTION

Cooley Landing is an approximately 8.5 acre peninsula with a physical address of 2100 Bay Road in East Palo Alto, California (Figure 1). The site extends into San Francisco Bay and is geographically located at the eastern extent of Bay Road. An asphalt-paved access road traverses the site generally southwest to northeast and is a continuation of Bay Road. Cooley Landing is primarily undeveloped land. Surface elevations range from 0 to approximately 12 feet mean sea level (msl). Vegetation consisting primarily of trees and overgrown grasses cover most of the site with the exception of a building, two parking areas at the southwest and northeast portions of the site, and an asphalt paved road that is a continuation from Bay Road. The southwest portion of the site contains areas of surficial construction debris, primarily concrete, and potential wetlands area approximately 3,500 square feet in area. This potential wetlands area was designated by the United States Army Corp of Engineers (USACOE) partially based on a biological assessment conducted in January 2010 (Kleinfelder, 2010) (Figure 2).

The site building, constructed in the early 1960’s, was formerly occupied by Palo Alto Boat Works, and is approximately 4,000 square feet in area. An additional 1,780 square foot structure, constructed in 1965, adjoins the main building to the east. A portion of a wharf, associated with the former Palo Alto Boat Works is located at the northeastern portion of the site. The wharf includes a pair of jetties composed of small boulders and earth and metal docking set on wooden pilings. A low-lying area is present at the northeast site boundary and was formerly the location...
of a dredging vessel. Reportedly, the former vessel was converted into living quarters for one of the former site owners and occupants before it burned down in 2008. A non-working water well and pump station exist near the northwest corner of the boat works building. Riprap, consisting of large blocks of construction debris comprises the perimeter of the site adjacent to the San Francisco Bay (Figure 2).

The site occupies a portion of the Ravenswood Open Space Preserve (ROSP) that also includes a former salt pond, which extends to the north. The site is bordered to the north, east, and south by the San Francisco Bay, and to the west by the ROSP and the Palo Alto Baylands Nature Preserve.

3. PROJECT DESCRIPTION

Cooley Landing is located at the end of Bay Road and is currently inaccessible to the public. The plan is to develop the site into a public park with low intensity recreational, educational, and conservation uses, while respecting the natural and historic integrity of the site. The City has conducted extensive technical studies to evaluate site conditions as part of designing a public park at the site.

The Final Concept Plan for the park prepared by Callender Associates, (Callender, 2010) includes a paved access road which is an eastward continuation of Bay Road that provides access to the site from the existing hiking/biking trail on Bay Road. The paved road continues past the southwestern parking lot area and into Cooley Landing and continues northeasterly towards the water. The road terminates at a centrally located roundabout area with gravel parking stalls. The roundabout allows vehicles, including buses and fire trucks, easy access to and from the park. Outlying the paved access road and generally paralleling the perimeter of the site is a paved loop trail that leads to various viewing and interpretive areas, outdoor classroom, picnic tables, wildlife viewing/overlook areas, family water access area, wetlands areas, the historical dredge interpretive area, the boathouse building, and seating areas. Smaller gravel paved trails provide access to the park areas and water. At the eastern waterfront area, two jetties extend into the bay, and both have overlook areas. A copy of the Final Concept Plan is included as Appendix A.
4. SITE CHARACTERIZATION
This section provides a brief overview of the site history, a brief summary of the site characterization, and COPCs.

4.1. Site History and Background
The following section on-site history and background was primarily obtained from the Ninyo & Moore 2010 RAP (Ninyo & Moore, 2010)

From 1932 to 1957, San Mateo County operated a waste disposal site at Cooley Landing. Reportedly, much of the wastes brought to the site were burned, first in open fires and later in an incinerator. Based on historical aerial photographs, topographic maps, and historical summaries, wastes (reportedly, mostly construction debris) were dumped onto the tidelands surface, burned/partially burned, and allowed to settle. This process was conducted repeatedly (e.g., additional wastes were disposed of and burned) to create the landmass. Essentially, as wastes were brought to the site and burned, they were dumped further and further into the bay resulting in the expansion of the originally small finger of land to its current configuration known as Cooley Landing.

In 1959, Mr. Carl Schoof purchased the middle parcel of the site (parcel running through the center of the site, also referred to as Property 57), and opened the Palo Alto Boat Works. He specialized in repairing wooden boats and boat construction. Mr. Schoof constructed the boat works building currently situated on the site for the Palo Alto Boat Works. Mr. Schoof also constructed a wharf for the Palo Alto Boat Works, and portions of the wharf are present at the site. The wharf includes a pair of short sea walls of small boulders and a metal docking facility set on wooden pilings. The docking facility has mostly rusted away and its physical integrity is poor. Reportedly, Mr. Schoof used layers of construction debris and other unidentified fill soils/materials as cover for Property 57. At some point, (the exact date is unknown) Mr. Schoof acquired a dredge which he planned on using to clear out local harbors.
According to references in an October 2006 Kleinfelder Phase I Environmental Site Assessment (ESA) report for the Cooley Landing Project (Kleinfelder, 2006a), Mr. Schoof placed between 2 and 15 feet of fill over the entire dumpsite. The Schoof family owned the middle parcel of the site until 1998, at which time the 6.75 acres was purchased by the Peninsula Open Space Trust (POST). The Mid Peninsula Regional Open Space District (District) purchased the northern and the southern portions of the site in 1980. In February 2006, the City was gifted the middle parcel of the site from POST. The approximate site parcel locations are included on Figure 2.

5. SITE CHARACTERIZATION
This section describes groundwater, surface water, and subsurface conditions at the site.

5.1. Groundwater
According to the California Regional Water Quality Control Board (RWQCB), Water Quality Control Plan for the San Francisco Basin (Basin Plan), the site is located in the Santa Clara Valley Groundwater Basin, San Mateo Plain Sub-Basin (RWQCB, 2007). The reported existing beneficial uses for groundwater include municipal and domestic water supply, industrial service and process water supply, and agricultural water supply. According to a 2008 Groundwater Monitoring Report prepared by Arcadis (Arcadis, 2008) for 2081 Bay Road, located approximately 1,000 to 1,500 feet southwest of the site, local shallow groundwater flow is toward the east.

During the June 2010 site investigation, groundwater was encountered in some exploratory trench excavations at depths of approximately 6 to 9.5 feet bgs. Kleinfelder previously encountered groundwater at approximately 8 feet bgs during their geotechnical investigation (Kleinfelder, 2006b). Because of the proximity of the site to the San Francisco Bay, it is likely that groundwater elevation and flow direction at the site is tidally influenced, and that shallow groundwater is brackish due to salt water intrusion. Additionally, based on previous
RWQCB decisions on other Bay Area bay front sites, local groundwater is not suitable for use as a drinking water resource.

5.2. **Surface Water**

The San Francisco Bay is the closest natural surface water body, surrounding the site to the north, south and east. Existing beneficial uses for the San Francisco Bay include recreation, spawning habitats, cold and warm water habitats, and wildlife habitat uses. Surface water is present intermittently in low lying areas of the site such as the previous location of the dredge vessel in the northeastern area of the site, and the wetlands area at the southwestern area of the site. Currently, surface drainage is toward the surrounding Bay and wetlands areas to the north, south and eastern sections of the site. The existing beneficial uses of surface water in the San Francisco Bay include Industrial Service Water Supply, Ocean, Commercial and Sports Fishing, Shellfish Harvesting, Estuarine Habitat, Fish Migration, Preservation of Rare and Endangered Species, Wildlife Habitat, Water and Non-Water Contact Recreation, and Navigation. Potential beneficial uses include Fish Spawning.

5.3. **Subsurface Conditions**

Based on reviews of previously prepared documents and results of the June and November 2010 site investigations, two contaminant sources exist at the site. One source is the burned wastes associated with the former site use as a solid waste disposal facility between 1932 and 1957 where wastes were disposed of and burned. The second contaminant source is associated with the undocumented cover fill soils that were brought to the site (subsequent to the site use as a waste disposal facility), from undocumented source(s) and used as fill material to cover the burned wastes.

Based on information obtained from the June 2010 site investigation, and information from previous investigations at the site, subsurface materials underlying the site, excluding the wetlands area, are comprised of three distinct layers of artificial fill materials.
• The upper fill (fill) extends from the surface to depths of approximately 1 to 7 feet below ground surface (bgs) and is primarily comprised of brown, dry to damp sands and silts (cover fill soils).

• The upper fill is underlain by a second fill layer, referred to as fill+debris, (cover fill soils) that is generally comprised of brown silts and sands with a mixture of construction debris materials consisting of an estimated 40 to 80 percent concrete, brick, asphalt, metal, glass and plastic that extends between 1 to 8.5 feet bgs.

The two fills are herein collectively referred to in this revised SGMP as cover fill soils.

• The third fill consisting of burned wastes+debris+fill, (herein referred to as burned wastes in this revised SGMP) consists of a mixture of burned wastes, construction debris and fill soils and underlies the cover fill soils at depths between 2 to 9 feet bgs. At locations explored, the burned wastes generally consist of mixtures of burn ash, glass fragments and bottles, metal debris, bricks, and fill soils.

Based on review of the Kleinfelder (2006b) Preliminary Geotechnical Feasibility Study report, the burned wastes and cover fill soils are underlain by stiff lean clay to clayey sands to depths of up to 18 feet bgs. These soils, described as fill in their report, overlie soft, compressible Bay Mud up to depths of 55 feet bgs.

In November 2010, soils/wastes at the wetlands, boat ramp area, and areas of some trees proposed to remain at the site were evaluated with respect to the planned remedial action. Based on the investigation, and the physiographic conditions of the potential wetlands area, it is likely than only minimal cover fill soils, if any, were placed in this area. At the western area of the potential wetlands area, it appears that the surface is composed of a salt crust, and a thin layer of cover soil and/or sedimentation composed of clays and silts, approximately 6 inches to a foot thick with little vegetation, that overlies debris and burned wastes. The eastern area is primarily the location of pickle-weed, underlain by cover fill soils and debris-containing soils/sediments up to 1.5 feet thick, the maximum depth evaluated in November, 2010. The proposed boat ramp area is composed of poorly sorted sands (sediments) that extend to approximately 1.5 feet bgs, at the northern area, and cover fill and debris up to 1.5 feet bgs at the southern area, based on the total depths evaluated in November 2010.
6. **DEFINITIONS**

Definitions of key terms used in this revised SGMP are provided in the following sections.

6.1. **Materials**

For purposes of this revised SGMP, the term “materials” refers to burned wastes and/or cover fill soils and/or other subsurface materials that may be encountered during the planned construction.

6.2. **Contaminated Substance**

In the context of this revised SGMP, a contaminated substance is one that contains a substance, or substances, at concentrations that would: require special training, handling, or the use of personal protective equipment; restrict the end use to protect human health or the environment; be subject to local, state, or federal regulatory requirements; or necessitate an environmentally-related monetary surcharge for handling, transportation, or disposition.

Based on the planned development of the site into a park and results of the previous site investigations, contamination will be encountered in the construction areas, and the materials encountered and possibly generated will be considered a contaminated substance that may contain chemicals at levels that make it a hazardous substance, or in some cases, a hazardous waste under state and/or federal regulations, unless additional analytical testing confirms otherwise.

Protective measures and equipment to reduce or prevent exposures from the contaminated materials generated during this project will be specified in the project health and safety plans, discussed in further detail in Section 13.

6.3. **Hazardous Substance**

A hazardous substance is any substance that is toxic, corrosive, an irritant, a strong sensitizer, flammable, combustible, radioactive, or that may cause personal injury or illness as a proximate result of any customary or reasonable foreseeable handling or use.
6.4. **Hazardous Waste**

A California-hazardous waste is a contaminated substance that meets the definition of hazardous waste as defined in the California Code of Regulations (CCR) Title 22 Sections 66261.20 through 66261.24. A Resource Conservation and Recovery Act (RCRA)-hazardous waste is a contaminated substance that meets the definition of hazardous waste as defined in 40 Code of Federal Regulations (CFR) Part 261. Based on analytical results of the investigations conducted at the site, surface and subsurface cover fill soils at some locations and the burned wastes are classified as hazardous wastes. Although not anticipated for this project, if materials are transported and disposed of off-site, it is important to note that various permitted landfill and treatment/disposal facilities typically have additional analytical requirements beyond federal and state requirements based on their permits from local and state regulatory agencies.

6.5. **Competent Person**

A competent person shall have demonstrated knowledge of, and professional experience in, the observation and documentation of environmental excavating activities; environmental and geologic conditions in the project area; and recognition of, and testing for, hazardous materials and conditions. A competent person shall have current Occupational Safety and Health Administration (OSHA) training and certificates and the authority to respond to changed conditions. Typically, a competent person will be a state-licensed geologist, engineer, or health professional with sufficient knowledge of local conditions and environmental regulations, or a person working under the direct supervision of such a geologist or engineer.

6.6. **Construction Area**

For the purpose of this revised SGMP, the term “construction area” refers to materials that will be disturbed or encountered by planned project earthwork activities and for purposes of this plan refers to the entire site. Work performed under this revised SGMP shall be in compliance with this revised SGMP, the San Mateo County Environmental Health Services Division, Solid Waste Local Enforcement Agency (LEA), and RWQCB guidelines.
7. CONTAMINANTS OF POTENTIAL CONCERN

The contamination is considered to be both the imported cover fill soils and the underlying burned wastes. Based on the history of the site (e.g., repeated waste dumping and burning at the tideland areas to create/expand the land mass) the entire land mass is considered to be the dump site. Based on analytical results of the cover fill soils subsequently placed over most of the burned wastes, absence of information pertaining to the sources of the imported fill, and the variability of COPC concentrations in these fill soils, we have assumed that the lateral extent of COPC-impacted cover fill soils also corresponds to the entire site area. The distribution of COPCs in the cover fill soils is inconsistent because these materials were imported from unknown off-site source(s).

The following COPCs were selected because they have been detected above regulatory action levels based on data from previous site investigations.

- Polycyclic Aromatic Hydrocarbons (PAHs):
 - benzo(a)anthracene
 - benzo(a)pyrene
 - benzo(b)fluoranthene
 - benzo(k)fluoranthene
 - dibenz(a,h)anthracene
 - indeno(1,2,3-cd)pyrene

- organochlorine pesticides:
 - chlordane
 - dieldren
 - gamma-chlordane
 - heptachlor-epoxide
 - DDT

- Polychlorinated Biphenyls (PCBs)
 - aroclor 1254
 - aroclor 1260

- total petroleum hydrocarbons
 - carbon range C_{18-C36}
 - carbon range C_{10-C28}
• metals:
 o arsenic
 o cadmium
 o copper
 o lead
 o nickel
 o mercury

8. REMEDIAL ACTION AND CONSTRUCTION OF A PUBLIC PARK

The proposed remedial alternative for the site is construction of an engineered cap (Ninyo & Moore, 2010). An engineered cap was the preferred remedial alternative for the site because of the relatively large lateral extent of cover fill soils corresponding to the areal extent of the site, and the planned future site use as a public park. This remedial action was also selected because it is protective of human health and the environment since it effectively prevents direct contact with the COPC-IMPACTED impacted cover fill soils and burned wastes and also prevents exposure to wind blown dusts that may contain COPCs. Capping the contaminated materials will also help inhibit rainwater runoff from transporting COPCs into surrounding surface water. The engineered cap is recommended to be a minimum of 2 feet thick throughout the site, except in the potential wetlands area where a combination of contaminated materials removal and subsequent cap placement will be conducted, in the area corresponding to the boat works building footprint, and where the proposed surface materials are “hardscape materials” such as concrete or asphalt pavement. The potential wetlands area is proposed to be a restricted area with limited or no public access. The engineered cap in this area is proposed to be approximately 1-foot thick, overlying a protective geofabric membrane, placed subsequent to removal of approximately one foot of materials. In those areas where the surface will be relatively impervious, such as concrete or asphalt pavement, the cap thickness will be reduced. Figure 3 illustrates the engineered cap and proposed wetland area.

It is anticipated that activities associated with construction of a public park including, but not limited to planting, construction of subsurface utilities, and possibly construction of subsurface structural support systems associated with site features, will occur prior to, during and/or after
cap placement, and may result in disturbing the COPC-IMPACTED impacted cover fill soils, possibly the underlying burned wastes, and the engineered cap. This revised SGMP is to be implemented prior to conducting work that would involve disturbing surface and/or subsurface materials at the site either prior to and during construction of the engineered cap. Activities conducted after cap construction that may result in disturbing the engineered cap and underlying materials shall be conducted in accordance with this revised SGMP and the O&M Plan.

9. WASTE CATEGORIES
COPC-IMPACTED impacted cover fill soils and/or burned wastes may be encountered during planned activities associated with developing the site as a public park. The proposed engineered cap should not result in generating excess cover fill soils and/or burned wastes that require off-site disposal with the exception of possible contaminated or unsuitable debris such as present at the southwest area of the site. It is anticipated that excavated contaminated materials, if encountered, will be reconsolidated/remain on-site by either being placed back into the area from which they were excavated (e.g., excavation of a subsurface utility trench) or be reconsolidated at another on-site location (e.g., placed in the low lying area of the former dredge), after approved by the RWQCB. The goal of this project is not a removal action or clean closure of the site, therefore excavated contaminated materials will be reused on-site unless a competent person considers these materials unsuitable for on-site reuse. Concrete and other inert “clean” debris located at the southwestern portion of the site may be crushed and reused on-site for the engineered cap based on the approval of a competent person.

As previously mentioned, although not anticipated during construction of the engineered cap and subsurface utilities, if excavated contaminated materials are required to be transported off-site, the waste classification of cover fill soils or burned wastes will depend on the analytical results of in situ or stockpile sampling and testing.

Subsequent to park construction, it is anticipated that any future work that could potentially compromise the integrity of the engineer cap will require the work be conducted in accordance with this revised SGMP and the O&M plan. It is possible that the potential future activities will
involve generating contaminated materials that require off-site disposal. It is recommended that during any excavation activities, COPC-IMPACTED impacted cover fill soils and underlying burned wastes, as applicable, be separately stockpiled for purposes of waste characterization and possible off-site disposal. The following describes the potential waste categories.

- RCRA-hazardous wastes will be disposed of at a Class I landfill facility. This waste may require pretreatment prior to Class I disposal based on the levels of contaminants in the waste. Previous analytical testing indicates some cover fill soils and/or burned wastes fall into this classification.

- Non-RCRA (California) hazardous wastes may be disposed of at a California hazardous waste Class I landfill facility, or out-of-state, non-RCRA hazardous waste facility. If transported to an out-of-state facility, the material would be disposed of based on classification in the state where the receiving facility is located. Previous analytical testing indicates some cover fill soils and/or burned wastes fall into this classification.

- Non-hazardous contaminated materials may be disposed of at a Class III solid waste facility, or used as daily cover at such a facility, as appropriate. If such work occurs after constructing the engineered cap, this would include non-impacted cap soils, low concentration COPC-IMPACTED impacted soils, and low concentration COPC burned wastes that do not fall into the two classifications listed above.

- Cover fill soils classified as “clean” for the purposes of off-site disposal will have COPCs at concentrations below San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) as listed in Table K-1 - Direct Exposure Soil Screening Levels, Residential Exposure Scenario. It is not anticipated that the planned remedial action will include excavation of the existing “clean” cover fill soils, since the plan is to cover these soils, rather than remove them from the site. However, once remediation activities are completed and the engineered cap is constructed over the existing COPC-IMPACTED impacted cover fill soils, the fill soils comprising the engineered cap will be considered clean soil/materials unless adversely impacted by future contaminant sources after the site has been capped.

10. REGULATORY FRAMEWORK
The Department of Environmental Health, Local Enforcement Agency (DEH/LEA) has the primary responsibility of conducting periodic site inspections ensuring the correct closure and maintenance of solid waste facilities to ensure protection of human health in accordance with applicable portions of CCR Title 27. Reportedly, the County of San Mateo operated the dump from 1932 to approximately 1957 and based on the years of operation, the site is a pre-
regulation, closed site. The site is not listed in the California Department of Resources Recycling and Recovery (CalRecycle) Solid Waste Information System (SWIS) database. The RWQCB is the lead regulatory agency for the site. Both the DEH/LEA and RWQCB require notifications prior to conducting work that would involve disturbing surface and/or subsurface materials at the site.

11. PROJECT TEAM

This section describes the project team relevant to the excavation, handling, transportation, reuse, and, as applicable, off-site disposal of contaminated materials, including groundwater if encountered at the site.

11.1. Project Manager

The City is overseeing implementing the planned remedial action and construction of the public park. The City will serve as the point of contact and will coordinate with the involved parties.

11.2. General Contractor(s)

The General Contractor(s) (Contractor) shall be responsible for project construction in accordance with project documents. The Contractor’s scope of work, subject to the bid documents, will generally include, but not be limited to construction of subsurface utilities, construction of the engineered cap, and either concurrent or subsequent construction of the public park. Regardless, if future planned construction activities include the potential to encounter the COPC-IMPACTED impacted cover fill soils or the underlying burned wastes, the Contractor will be required to implement this revised SGMP that addresses the excavation and management, temporary stockpiling, on-site materials reuse, and possible off-site-site disposal, including measures to protect worker and public health, and the environment, from impacts caused by the Contractor’s activities. The Contractor shall be responsible for assigning qualified personnel to execute the work, and for selecting and supervising the work of other subcontractors assigned to the project.
The Contractor shall provide a site Superintendent, who will be responsible for site activities. The site Superintendent’s responsibilities will include oversight of equipment, labor, materials, and resources needed to complete the project.

11.3. **Health and Safety Manager**

The City shall retain a Health and Safety Manager (HSM), who shall be a Certified Industrial Hygienist (CIH), or under the direct supervision of a CIH, with the appropriate training, certificates, and experience. The HSM will be responsible for preparing and overseeing implementation of site specific Health and Safety Plan (HASP). The plan shall list the various safety-related Contractor personnel and their duties and responsibilities. The plan is discussed in further detail in Section 13. The City may elect to include this task in the Project Environmental Consultant’s scope of work.

11.4. **Subcontractors**

The Contractor may utilize subcontractors to execute subtasks of this project, subject to approval by the City. The supervision, inspection, and approval of subcontractor work will be the responsibility of the Contractor.

11.5. **Project Environmental Consultant**

The City will retain a qualified environmental consulting firm to provide the services for the environmental oversight of construction of the engineered cap and construction of the park. The consultant will monitor construction and excavation activities, provide guidance to the Contractor on segregation of materials, as necessary, and document the on-site reuse of excavated materials. As applicable, they will assist in characterizing and profiling contaminated materials, if they are proposed to be transported and disposed of off-site. The Environmental Consultant’s staff is described below.
11.5.1. **Project Manager**

The Environmental Consultant shall provide a Project Manager to assist the City’s Project Manager in overseeing the environmental aspects of the project. The Project Manager shall be a California-Registered Civil Engineer (PE), California-Professional Geologist (PG), or a California Certified Engineering Geologist (CEG).

11.5.2. **Field Geologist/Engineer/Scientist**

The Environmental Consultant shall assign a Field Geologist/Engineer/Scientist (Environmental Professional) to perform cap construction oversight related activities and excavation monitoring (e.g., associated with subsurface utility construction), and oversee and document the temporary stockpile management and on-site reconsolidation of excavated materials. Although not anticipated, if materials require off-site transportation and disposal, they will oversee and document these activities, as applicable.

11.6. **Project Geotechnical Consultant**

The City will retain or assign a qualified geotechnical consultant to serve as the Project Geotechnical Consultant. The Geotechnical Consultant will evaluate the geotechnical suitability of engineered cap soils, compaction testing, and the excavated materials to be reused on-site, and oversee backfilling of excavation(s).

12. **NOTIFICATIONS**

In addition to required permits, approvals, and notifications required by law, as applicable, the Contractor shall be responsible for notifying California OSHA in accordance with the Contractor’s Annual Trenching and Excavation Permit and notifying Underground Service Alert. The City and appropriate regulatory agencies should be notified prior to commencing construction activities.

Permits for temporary stockpiling of contaminated materials, as applicable, will not be necessary if they are stored on-site less than 90 days. As applicable, the Contractor, with assistance from
the Project Environmental Consultant, will ensure that temporary stockpiles are not left on-site for 90 days or more.

13. HEALTH AND SAFETY PLAN

Prior to site mobilization, the HSM shall prepare the HASP. The site is located at the end of Bay Road and currently access to the site is restricted. During construction of the engineered cap and public park, the site will continue to be restricted from public access. The closest active business to the site is Infinity Auto Salvage located at 2091 Bay Road, greater than one-quarter mile to the west-southwest. The closest residential development is greater than one-half mile west of the site. It is recommended that a brief public notification letter/flyer be prepared and distributed informing applicable businesses/interested parties on Bay Road of the planned activities at the site. The notification should also be placed on signage at the ROSP.

The HASP will provide policies, information, requirements, and guidelines to be followed while conducting construction of subsurface utilities, the engineered cap and any other concurrent/subsequent excavation activities, temporary stockpiling/management/storage, on-site reuse, handling, and, as applicable, disposal of waste(s) from the site. The HASP shall be prepared in accordance with the Federal and State OSHA Hazardous Waste Operations and Emergency Response (HAZWOPER) Standards: 29 CFR 1910.120 and 8 CCR Section 5192.

The HASP shall provide for contingencies and be structured to handle a variety of situations that may arise, but be concise enough so that site workers understand the hazards and are able to follow the procedures to reduce the level of risk. For this project, it is likely that the entire site will be an exclusion zone and therefore field personnel working on this project shall be trained and current in accordance with the standards provided by HAZWOPER (40-hour initial training with annual updates). Appropriate management personnel shall have eight-hour supervisor training. Additional training will be required for personnel engaged in specialized tasks, as appropriate.

Field personnel shall be required to review the HASP and provide written acknowledgement of their review and understanding of the HASP and willingness to abide by its requirements. In ad-
dition, the Contractor’s site Superintendent will perform a daily tailgate safety meeting held at the beginning of each workday to discuss relevant task-specific safety issues. Additionally, daily site visitors will be required to review the HASP and sign the acknowledgement sheet.

14. **SOIL EXCAVATION**

The Contractor is responsible for construction activities associated with subsurface utility construction, cap placement and concurrent and/or subsequent excavation, trenching, handling, on-site reuse, and temporary stockpiling of materials in accordance with project specifications, the HASP, this revised SGMP, and all applicable local, state, and federal statutes, regulations, and guidelines. Excavation and handling of COPC-impacted cover fill soils and/or burned wastes (materials) will be conducted in a manner that prevents the release of contamination, if present, to other on-site and off-site-site areas.

The Consultant’s Field Environmental Professional will provide construction oversight during subsurface utility construction, engineered cap construction activities and concurrent and/or subsequent excavation activities, and use appropriate field screening procedures and indicators and project-specific experience to guide the Contractor in segregating the excavated materials.

14.1. **Excavated Material Reuse or Disposal**

The geotechnical suitability of excavated materials will be evaluated by the Geotechnical Consultant. In general, with the exception of the potential wetlands area, materials are not proposed to be excavated as part of constructing the engineered cap. Soils that will be brought to the site for constructing the engineered cap will require pre-approval by the geotechnical and environmental consultant and the RWQCB prior to their being transported to the site.

Contaminated materials will be excavated in association with park construction. In the case of subsurface utilities, the excavated materials will not be used as backfill for the trench subsequent to utility installation. Pre-approved clean fill material with suitable geotechnical qualities will be used in place of the excavated material. There will likely be requirements
regarding the location and method of placement. Excess trench spoils that will not be reused in place and any other excavated materials generated prior to and/or during park construction will be segregated an either may be immediately reused at a pre-approved on-site location or may be temporarily stockpiled. Stockpiles will be managed according to the guidelines specified in this revised SGMP. If materials require off-site disposal, they will be sampled and analyzed by a certified environmental laboratory, and the results will be used for profiling the soil for disposal. The results of the geotechnical evaluation and analytical testing will be used to make one of the following determinations for reuse or off-site-site disposal:

- the excavated material is suitable for on-site reuse, or
- the excavated material is not suitable for on-site reuse, and should be disposed of off-site-site.

Groundwater at the site is shallow, approximately 6.0 to 9.5 feet bgs; however, it is not anticipated to be encountered during excavation activities associated with park construction. The anticipated subsurface utility line excavation will be no greater than 5.0 feet below the current ground surface. Water generated during excavation activities from spraying for dust suppression will be controlled in a manner consistent with a site specific Storm Water Pollution Prevention Plan (SWPPP) to be prepared by the Contractor. The Contractor shall be responsible for implementing best management practices (BMPs) specified in the SWPPP.

As necessary, the Contractor shall ensure that water draining from excavated materials will not be allowed to flow onto the ground surface unless the surface is protected with a High Density Polyethylene (HDPE) geomembrane, and will not be allowed to flow into the bay. Surface water runoff will be handled according to the site-specific SWPPP, national pollution discharge elimination system requirements, and other pertinent statutes and regulations. The Contractor will be responsible for the management and disposal of surface water runoff in accordance with the SWPPP and other applicable permits.
14.2. **Intrusive Work Monitoring**

The Consultant’s Field Environmental Professional will observe utility trenching, cap construction activities and previous/concurrent/subsequent intrusive work activities, and use appropriate field screening procedures and indicators. For the COPC-impacted cover fill soils, field observations likely will not assist with identifying the presence of contaminated material since the elevated metal and PAH concentrations in these soils are not likely to be visible. Field screening for VOCs using a photo-ionization detection (PID) may be conducted and assist with identifying potential contamination in the COPC-impacted cover fill soils. Regarding the underlying burned wastes, if they are encountered, field observations such as distinctive discoloration, presence of ash, melted debris, and/or possibly odors, as well as project specific experience will be used as indicators. These activities will minimize potential construction delays.

15. **SEGREGATION AND STOCKPILING**

Although off-site transportation and disposal of excavated materials is not anticipated to be conducted as part of constructing the engineered cap (since excavated materials are proposed to be reused on-site), there may be small volumes of excavated contaminated materials that are unsuitable as decided by the competent person and based on geotechnical or environmental factors/conditions.

These materials will be transported and disposed of at a pre-approved facility. If the excavated COPC-impacted cover fill soils and/or burned wastes required to be disposed of off-site are not directly loaded onto trucks, the subcontractor will transport the materials to a pre-determined temporary stockpile staging area. Excavated materials evaluated as suitable for on-site reuse by the Consultant’s Field Environmental Professional will be placed by the subcontractor into a “Reuse” stockpile. The Contractor shall segregate and place excavated materials not suitable for on-site reuse into the stockpiles listed below based on directions from Consultant’s Field Environmental Professional:

- **COPC-impacted Cover Fill Soils** - stockpile consisting of soils and debris (materials) impacted with COPCs.
• **Burned Wastes** - stockpile containing primarily burned wastes.

15.1. Stockpile Management

As applicable, a staging area and the temporary stockpiles will be managed by the Contractor in accordance with this document, the project specifications, and the project SWPPP. It is recommended that excavated materials be replaced as soon as possible after construction activities allow, or be moved to a pre-approved on-site location. In general, the excavated, stockpiled materials associated with the construction of the engineered cap or soils/materials excavated and stockpiled subsequent to placement of the cap will be managed as follows:

- clean engineered cap soils if disturbed as a result of future activities (e.g., after construction of the engineered cap), will not be allowed to be in direct contact with any contaminated or potentially contaminated materials (e.g. COPC-impacted cover fill soils and/or burned wastes). This may be accomplished by separately placing the excavated/stockpiled clean engineered cap soils onto a relatively impervious surface, such as asphalt, concrete, underlain by 10-millimeter (mil) or thicker HDPE liner or directly onto the HDPE liner.

- prior to construction of the engineered cap, COPC-impacted cover fill soils and/or burned wastes may be placed directly onto the existing COPC-impacted cover fill soils or burned wastes without a HDPE liner underlying these stockpiled materials.

- sprayed or misted with water to minimize dust emissions during stockpiling, if necessary.

- securely covered with a 6-mil or thicker HDPE liner to minimize runoff from rain, and

- configured in such a manner that surface water runoff, if present, from the stockpile does not carry stockpiled materials beyond the stockpile area.

The Environmental Consultant will assist the City with removing stockpiles from the site in a timely manner to avoid nuisance complaints. It is likely that the materials will be classified as hazardous wastes based on previous analytical results from site investigations. The materials will be temporarily stockpiled on-site by the Contractor in accordance with hazardous waste regulations and removed within 90 days of intrusive activities.
15.2. **Best Management Practices**

The Contractor shall implement BMPs to protect the temporary stockpiles from erosion and storm water run-on and runoff. The BMPs include, but are not limited to, the following:

- erosion control,
- storm water drainage control,
- secondary containment (as applicable),
- fugitive emission control of dust and/or vapors,
- wind dispersion control,
- spill prevention, and
- additional BMPs specified in the project SWPPP.

15.3. **Odor and Vapor Control**

There is a potential to generate odors during construction activities, including excavation and management of temporarily stockpiled contaminated materials. The Contractor shall employ odor suppression techniques to mitigate impacts to site workers and visitors. The nearest residential and business districts are at least one-quarter mile to the west-southwest and should not be impacted by dust and/or odors potentially generated during site construction activities. The Contractor shall implement appropriate means and methods, including application of odor suppression techniques and covering stockpiles and open excavations or trenches prior to leaving the site at the end of each workday.

15.4. **Dust Control**

The Contractor will mitigate dust with water, either with a hand held sprayer or by water trucks, as needed, on the surface of active work areas. Care will be exercised to minimize the overuse of water so as not to create surface water runoff or excessively saturated conditions. Dust control will also be conducted on Bay Road near the site entrance during construction activities, especially during transport of clean soil on-site.

16. **UNKNOWN CONTAMINATION**

This section presents a general protocol regarding unknown contamination that may be encountered during intrusive work/construction activities.
If hazardous substances or conditions are encountered which present an immediate threat of injury to human health or water quality, the Contractor shall secure the area and shall notify the City immediately. The Contractor shall call "911" to summon the emergency services, as necessary.

If previously unknown hazardous substances or conditions are encountered that do not present an immediate threat to human health or water quality, the Contractor shall immediately notify the Environmental Consultant and the City. As necessary, the area surrounding the discovery of unknown contamination will be isolated and secured by the Contractor with markings, fencing, or a suitable barrier so that construction activities can be excluded from the zone of impact. The Environmental Consultant and the City will then decide whether immediate excavation, segregation, stockpiling, containerization, or other activities are warranted.

17. STOCKPILE CHARACTERIZATION

This section discusses the stockpile sampling procedures, if off-site disposal of excavated materials is required. Stockpile sampling and analytical testing will not be conducted for soils planned to be reused on-site. Analytical testing and reporting shall be the responsibility of the Environmental Consultant.

17.1. Stockpile Sampling

There will likely be two, distinct types of stockpiled materials, COPC-impacted cover fill soils and burned wastes. If off-site disposal is required, stockpile sampling may be necessary; however, because existing data from recent (2010) subsurface investigations is available for soil profiling, additional stockpile sampling for disposal purposes may not be necessary. The preferred disposal facility should be contacted regarding this option. If stockpile sampling is required, it shall be conducted in general conformance with the waste disposal site acceptance requirements. Additionally, based on results of future stockpile sampling and analysis, additional sampling may be required to meet the waste disposal site acceptance criteria; therefore, archiving of samples may be appropriate.
17.2. Analytical Testing Program

Analytical testing will not be conducted on materials proposed to be reused on-site since the planned remedial action is not to obtain clean closure of the site. The analytical testing requirements for materials to be disposed of off-site will be based on the accepting facility(s) and other requirements.

Materials that do not meet geotechnical or environmental requirements for reuse (i.e., requiring off-site disposal) will be tested according to the requirements of the accepting facility(s). Such materials may be tested for:

- Title 22 Metals or total threshold limit concentrations (TTLC); samples containing one or more metal concentrations less than the TTLC but greater than ten times the soluble threshold limit concentrations (STLC) will be analyzed for soluble metal concentrations by the waste extraction test (WET) method to define the waste as either hazardous or non-hazardous. Samples exceeding 5.0 milligrams per liter (mg/L) using the WET will be reanalyzed using a toxicity characteristic leaching procedure (TCLP) to classify the waste as either RCRA or non-RCRA hazardous waste.

- VOCs
- SVOCs
- Petroleum Hydrocarbons/hydrocarbon chain identification
- PCBs
- pH
- Other analytical tests required by the accepting facility(s).

The anticipated stockpile sampling criteria is provided in the following table.
<table>
<thead>
<tr>
<th>CONTAMINANT/ANALYTICAL TEST METHOD</th>
<th>PROTOCOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Frequency</td>
</tr>
<tr>
<td>Petroleum Hydrocarbons (8015M, 418.1, 1664)</td>
<td>0-25 cu. yd</td>
</tr>
<tr>
<td>BTEX (8020/8260)</td>
<td>25-500 cu. yd</td>
</tr>
<tr>
<td>Lead</td>
<td>500 - 1500 cu. yd</td>
</tr>
<tr>
<td></td>
<td>1500+ cu. yd.</td>
</tr>
<tr>
<td>VOCs (8260B)</td>
<td>0-1000 cu. yd</td>
</tr>
<tr>
<td>SVOCs (8270C)</td>
<td>1000-2000 cu. yd</td>
</tr>
<tr>
<td>Pesticides (8081A)</td>
<td>2000+ cu. yd</td>
</tr>
<tr>
<td>Herbicides (8150)</td>
<td></td>
</tr>
<tr>
<td>Metals (Title 22) (6010B/7471A)</td>
<td></td>
</tr>
<tr>
<td>PCBs (8082)</td>
<td></td>
</tr>
</tbody>
</table>

18. TRANSPORT AND DISPOSAL

At this time, it is anticipated that the proposed remedial action and construction activities will not generate materials that will require transportation and off-site disposal since excavated materials are proposed to be reused on-site. However, relatively small volumes of contaminated materials such as the debris located at the southwestern area of the site that cannot be crushed and incorporated into the engineered cap or other unsuitable materials may require off-site disposal.

If off-site transport of unsuitable site materials is necessary, transporters and disposal facilities used must be appropriately licensed and/or permitted and properly insured and be pre-approved by the City. The Contractor, with assistance from the Consultant, will manage the transportation and disposal of wastes to the appropriate treatment and disposal or recycling facilities. The Contractor shall prepare waste profiles and manifests for review by the Consultant and signature by the City. Manifests and waste profiles will be forwarded to the appropriate disposal/recycling facility for acceptance. The Contractor shall be responsible for the scheduling of shipments of wastes after notice of acceptance.
Coordinating vehicles and vessels entering the site for loading and off-site-site disposal of site materials shall be tracked through documentation, by the Contractor, with assistance from the Project Environmental Consultant’s Field Environmental Professional. Vehicles and vessels shall be decontaminated, as necessary, prior to their departure from the site. Care shall be taken to avoid spillage of contaminated materials and/or tracking such materials off-site. The Consultant shall maintain a daily log of contaminated substances, hazardous substances, or hazardous wastes removed from the site for disposal. The logs shall include a description of the truck, the date and time the truck left the site, and the destination. Upon project completion, the logs shall be accompanied by copies of waste manifests and load tickets that document receipt of the waste at the permitted facility and the weight of the load.

Hazardous wastes transported off-site for disposal or recycling shall be performed in accordance with Department of Transportation (DOT) Hazardous Material Transportation regulations 49 CFR Parts 171 and 180, 40 CFR Part 262, Subpart B, and Title 22 CCR Section 66262, which involve packaging, placarding, labeling, and manifesting requirements. Hazardous wastes transported shall also have appropriate certification notices per 40 CFR Par 268 and Title 22 CCR Section 66268. Personnel having the required DOT-training shall perform DOT-related functions, if required.

Contaminated materials characterized as non-hazardous that do not exhibit the DOT hazard class characteristics (i.e., explosives, gases, flammable/combustible liquids, flammable solids/spontaneously combustible materials/dangerous when wet materials, oxidizers and organic peroxides, toxic materials and infectious substances, radioactive materials, and corrosive materials) are not regulated under DOT rules for hazardous materials transportation. If a material is suspected to be hazardous, it shall be shipped under the appropriate hazard class.

Trucks carrying contaminated substances, hazardous substances, or hazardous wastes shall be enclosed such that there is no odor or dust during transportation along the haul route identified in the project specifications. Open trucks shall not be permitted to transport waste from the site that may produce odor or dust during transportation.
Although not anticipated, if tank car and tank truck loading/unloading activities occur on-site, they will be conducted in a bermed area to be constructed on-site, and in accordance with the requirements and regulation established by the DOT. Warning signs will be posted and verbal authorization required to prevent vehicular departure before complete disconnect of flexible or fixed transfer lines. Prior to filling and departure of tank car or tank truck, the lowermost drain and all outlet of such vehicles will be examined for leakage, and if necessary, tightened, adjust, or replaced to prevent liquid leakage while in transit.

19. GROUNDWATER MANAGEMENT
Construction of the engineered cap should not result in generating groundwater. However, some activities associated with park construction such as constructing subsurface utility trenches and landscaping will involve subsurface excavations and depending on the excavation depths, could potentially encounter groundwater. It is recommended that excavations, if possible, not extend to depths that correspond to the shallowest groundwater depth, approximately 6.0 feet bgs. Excavation in the wetlands area and on-site reconsolidation of the excavated wastes will likely be part of the planned remedial action and have the potential to generate water.

Because it is not anticipated that excavations will be to depths that correspond to the shallowest depth to groundwater, dewatering will not be performed to lower the groundwater table to below the depth of excavation. If for reasons currently not known at this time dewatering is conducted, the Contractor will be responsible for providing equipment (holding tanks, filtration systems) to contain groundwater until it is either transported off-site to a licensed wastewater treatment facility or discharged on-site. Groundwater can be used for on-site dust control pending approval from the RWQCB. Groundwater will not be discharged directly into the Bay unless a National Pollution Discharge Elimination Systems (NPDES) permit is obtained from the RWQCB.

Should disposal be required, the groundwater will be sampled and analyzed in accordance with the accepting facilities requirements.
20. DOCUMENTATION

The Environmental Consultant shall prepare a report summarizing construction activities. The report will include information relating to construction of the engineered cap, utility trench constructions, documentation of sources, volumes and classifications of soils brought to the site to be used to construct the cap, volumes of materials excavated and reused on-site or disposed off-site-site, and placement locations of on-site reused materials. If materials are transported off-site information will be provided regarding the characterization, handling, and disposition of these materials. The report will be signed by the Environmental Consultant’s registered professional (e.g., Professional Geologist, Professional Engineer).

The report will include the following information:

- Comprehensive documentation pertaining to the source(s), volumes, types of soils, dates, and other relevant information, (including regulatory agency approval letter(s) acknowledging they accept the source(s) of the soils to be brought to the site), pertaining to the soils transported to the site for constructing the engineered cap,

- Site map showing the lateral extent and thicknesses of the engineered cap,

- Extent of materials excavated in the potential wetlands area prior to placement of the engineered cap,

- Placement location(s), of the excavated materials reused on-site,

- Information pertaining to the on-site structure/building with respect to the planned remedial action,

- As applicable, identification of each stockpile type, a plot plan detailing the stockpile locations, and corresponding estimates of the volumes of materials in each stockpile. As applicable (e.g., off-site disposal), description of the sampling methodologies and sample location/selection process, and sample locations, a copy of the sample analytical results, chain-of-custody documents, and quality assurance/quality control supporting data, summary tables of the laboratory analytical results of the stockpile sampling,

- If materials are transported off-site, an accounting of the materials transported and disposed of off-site-site, including weight tickets and waste manifests,

- Health and safety monitoring records, including air monitoring analytical data during excavation activities and procedures used to mitigate odors and dust, and,
• Daily field reports of activities conducted accompanied by appropriate documentation, including photographs.

21. LIMITATIONS

This revised SGMP has been prepared in general accordance with current regulatory guidelines and the standard-of-care exercised in preparing similar plans in the project area. No warranty, expressed or implied, is made regarding the professional opinions presented in this revised SGMP. Variations in site conditions may exist and conditions not observed or described in this revised SGMP may be encountered during subsequent activities. Please also note that this revised SGMP did not include an evaluation of geotechnical conditions or potential geologic hazards.

Ninyo & Moore's opinions and recommendations regarding environmental conditions, as presented in this revised SGMP, are based on limited subsurface assessments. Further assessment of potential adverse environmental impacts from past on-site and/or nearby use of hazardous materials may be accomplished by a more comprehensive assessment. The samples collected and used for testing, and the observations made, are believed to be representative of the area(s) evaluated; however, conditions can vary significantly between sampling locations. Variations in soil and/or groundwater conditions will exist beyond the points explored.

The environmental interpretations and opinions contained in this revised SGMP are based on the results of laboratory tests and analyses intended to detect the presence and concentration of specific chemical or physical constituents in samples collected from the subject site, and on work performed by others. The testing and analyses have been conducted by independent laboratories, which are certified by the State of California to conduct such tests. Ninyo & Moore has no involvement in, or control over, such testing and analysis or work performed by others. Ninyo & Moore, therefore, disclaims responsibility for any inaccuracy in such laboratory results and work performed by others.

Our conclusions and opinions are based on an analysis of the observed site conditions and work performed by others. It should be understood that the conditions of a site could change with time.
as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this revised SGMP may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires any additional information, or has questions regarding content, interpretations presented, or completeness of this document.

This revised SGMP is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this revised SGMP by parties other than the client is undertaken at said parties’ sole risk.
22. REFERENCES

Kleinfelder West, 2006a Phase I Environmental Site Assessment, Cooley landing Project, dated October 19.

Kleinfelder West, 2006b Preliminary Geotechnical Feasibility Study for Cooley Landing Site in East Palo Alto, California, dated November 15.

Kleinfelder West, Inc., 2010 Preliminary Biological Habitat Assessment, Wetlands Assessment Map, Figure 3 (revised): dated January 12.

San Francisco Bay (Region 2), 2007 Water Quality Control Plan (Basin Plan), dated January 18.
APPENDIX A

FINAL CONCEPT PLAN